Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
BMJ Open Respir Res ; 11(1)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580439

RESUMO

BACKGROUND: Despite substantial progress in reducing the global burden of chronic obstructive pulmonary disease (COPD), traditional methods to promote understanding and management of COPD are insufficient. We developed an innovative model based on the internet of things (IoT) for screening and management of COPD in primary healthcare (PHC). METHODS: Electronic questionnaire and IoT-based spirometer were used to screen residents. We defined individuals with a questionnaire score of 16 or higher as high-risk population, COPD was diagnosed according to 2021 Global Initiative for COPD (Global Initiative for Chronic Obstructive Lung Disease) criteria. High-risk individuals and COPD identified through the screening were included in the COPD PHC cohort study, which is a prospective, longitudinal observational study. We provide an overall description of the study's design framework and baseline data of participants. RESULTS: Between November 2021 and March 2023, 162 263 individuals aged over 18 from 18 cities in China were screened, of those 43 279 high-risk individuals and 6902 patients with COPD were enrolled in the cohort study. In the high-risk population, the proportion of smokers was higher than that in the screened population (57.6% vs 31.4%), the proportion of males was higher than females (71.1% vs 28.9%) and in people underweight than normal weight (57.1% vs 32.0%). The number of high-risk individuals increased with age, particularly after 50 years old (χ2=37 239.9, p<0.001). Female patients are more common exposed to household biofuels (χ2=72.684, p<0.05). The majority of patients have severe respiratory symptoms, indicated by a CAT score of ≥10 (85.8%) or an Modified Medical Research Council Dyspnoea Scale score of ≥2 (65.5%). CONCLUSION: Strategy based on IoT model help improve the detection rate of COPD in PHC. This cohort study has established a large clinical database that encompasses a wide range of demographic and relevant data of COPD and will provide invaluable resources for future research.


Assuntos
Internet das Coisas , Doença Pulmonar Obstrutiva Crônica , Masculino , Humanos , Feminino , Adolescente , Adulto , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos de Coortes , Progressão da Doença , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/terapia , Atenção Primária à Saúde
2.
Front Biosci (Landmark Ed) ; 29(4): 140, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682195

RESUMO

BACKGROUND: Recurrence and metastasis are the main causes of non-small cell lung cancer (NSCLC)-related death. CD146 has been identified as a potential risk factor for poor prognosis, closely related to the distant metastasis and drug resistance in various cancers. However, the clinical significance of CD146 in NSCLC requires further investigation. MATERIALS AND METHODS: This study explored the correlation between CD146 expression and clinical variables using tumor tissue samples collected from our hospital. CD146 expression levels in NSCLC cell lines and tissues were assessed and compared using immunohistochemistry, real-time polymerase chain reaction (RT-qPCR), flow cytometry, and western blot analysis. The invasion and migration capabilities of tumor cells were determined using transwell and wound healing assays. The levels of proteins related to epithelial-mesenchymal transition (EMT) as well as the underlying PI3K/Akt signaling pathway was measured by western blotting. RESULTS: We discovered that CD146 expression is significantly associated with the EMT signaling pathway. High CD146 expression predicted lymph node metastasis, metastasis to distant organs, advanced Tumor, Node, Metastasis (TNM) staging, and poor survival in NSCLC patients. Wound healing and transwell assays showed that knocking down CD146 significantly suppressed cell migration along with cell invasion in NSCLC, whereas overexpressing CD146 notably enhanced these processes. Western blot analysis revealed significantly reduced levels of N-cadherin, vimentin, snail, twist, PI3K, and AKT phosphorylation in shCD146 H460 cells compared to vector control cells. Treatment with PI3K inhibitor PI3K-IN-1 increased E-cadherin expression levels but reduced N-cadherin, Twist, Vimentin, PI3K, and AKT phosphorylation levels in pcDNA3.1-CD146 A549 cells compared with the vector control cells. CONCLUSIONS: CD146 expression acts as a prognostic risk factor for adverse outcomes in NSCLC, promoting invasion and metastasis by activating the EMT through the PI3K/Akt signaling pathway. These findings underscore the potential therapeutic strategies targeting CD146, offering new treatment options for NSCLC patients, especially those at risk of metastasis.


Assuntos
Antígeno CD146 , Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal/genética , Antígeno CD146/metabolismo , Antígeno CD146/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Movimento Celular/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Células A549
3.
J Cancer Res Clin Oncol ; 150(4): 188, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602568

RESUMO

BACKGROUND: We aimed to comprehensively analyze the clinical value of immune-related eRNAs-driven genes in lung adenocarcinoma (LUAD) and find the potential biomarkers for prognosis and therapeutic response to improve the survival of this malignant disease. MATERIALS AND METHODS: Pearson's correlation analysis was performed to identify the immune-related eRNAs-driven genes. Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were used to construct this prognostic risk signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to investigate the underlying molecular mechanism. The single sample gene set enrichment analysis (ssGSEA) algorithm was conducted to evaluate the immune status based on the signature. The quantitative real-time PCR (qRT-PCR) analysis was performed to evaluate the expression value of the signature genes between LUAD tissues and adjacent lung tissues. RESULTS: Five immune-related eRNAs-driven genes (SHC1, GDF10, CCL14, FYN, and NOD1) were identified to construct a prognostic risk signature with favorable predictive capacity. The patients with high-risk scores based on the signature were significantly associated with the malignant clinical features compared with those with low-risk scores. Kaplan-Meier analysis demonstrated that the sample in the low-risk group had a prolonged survival compared with those in the high-risk group. This risk signature was validated to have a promising predictive capacity and reliability in diverse clinical situations and independent cohorts. The functional enrichment analysis demonstrated that humoral immune response and intestinal immune network for IgA production pathway might be the underlying molecular mechanism related to the signature. The proportion of the vast majority of immune infiltrating cells in the high-risk group was significantly lower than that in the low-risk group, and the immunotherapy response rate in the low-risk group was significantly higher than that in the high-risk group. Moreover, BI-2536, sepantronium bromide, and ULK1 were the potential drugs for the treatment of patients with higher risk scores. Finally, the experiment in vivo and database analysis indicated that CCL14, FYN, NOD1, and GDF10 are the potential LUAD suppressor and SHC1 is a potential treatment target for LUAD. CONCLUSION: Above all, we constructed a prognostic risk signature with favorable predictive capacity in LUAD, which was significantly associated with malignant features, immunosuppressive tumor microenvironment, and immunotherapy response and may provide clinical benefit in clinical decisions.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , RNAs Intensificadores , Reprodutibilidade dos Testes , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Microambiente Tumoral
4.
Respiration ; 103(3): 134-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38382478

RESUMO

BACKGROUND: Early detection and accurate diagnosis of pulmonary nodules are crucial for improving patient outcomes. While surgical resection of malignant nodules is still the preferred treatment option, it may not be feasible for all patients. We aimed to discuss the advances in the treatment of pulmonary nodules, especially stereotactic body radiotherapy (SBRT) and interventional pulmonology technologies, and provide a range of recommendations based on our expertise and experience. SUMMARY: Interventional pulmonology is an increasingly important approach for the management of pulmonary nodules. While more studies are needed to fully evaluate its long-term outcomes and benefits, the available evidence suggests that this technique can provide a minimally invasive and effective alternative for treating small malignancies in selected patients. We conducted a systematic literature review in PubMed, designed a framework to include the advances in surgery, SBRT, and interventional pulmonology for the treatment of pulmonary nodules, and provided a range of recommendations based on our expertise and experience. KEY MESSAGES: As such, alternative therapeutic options such as SBRT and ablation are becoming increasingly important and viable. With recent advancements in bronchoscopy techniques, ablation via bronchoscopy has emerged as a promising option for treating pulmonary nodules. This study reviewed the advances of interventional pulmonology in the treatment of peripheral lung cancer patients that are not surgical candidates. We also discussed the challenges and limitations associated with ablation, such as the risk of complications and the potential for incomplete nodule eradication. These advancements hold great promise for improving the efficacy and safety of interventional pulmonology in treating pulmonary nodules.

5.
J Hazard Mater ; 458: 131980, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421858

RESUMO

Understanding the occurrence, sources, transfer mechanisms, fugacity, and ecotoxicological risks of antibiotics play a pivotal role in improving the sustainability and ecological health of freshwater ecosystems. Therefore, in order to determine the levels of antibiotics, water and sediment samples were collected from multiple Eastern freshwater ecosystems (EFEs) of China, including Luoma Lake (LML), Yuqiao Reservoir (YQR), Songhua Lake (SHL), Dahuofang Reservoir (DHR), and Xiaoxingkai Lake (XKL), and were analyzed using Ultra Performance Liquid Chromatography/Tandem Mass Spectrometry (UPLC-MS/MS). EFEs regions are particularly interesting due to higher urban density, industrialization, and diverse land use in China. The findings revealed that a collective total of 15 antibiotics categorized into four families, which included sulfonamides (SAs), fluoroquinolones (FQs), tetracyclines (TCs), and macrolides (MLs), exhibited high detection frequencies, indicating widespread antibiotic contamination. The pollution levels in the water phase were in the order of LML > DHR > XKL > SHL > YQR. The sum concentration of individual antibiotics for each water body ranged from not detected (ND) to 57.48 ng/L (LML), ND to 12.25 ng/L (YQR), ND to 57.7 ng/L (SHL), ND to 40.50 ng/L (DHR), and ND to 26.30 ng/L (XKL) in the water phase. Similarly, in the sediment phase, the sum concentration of individual antibiotics ranged from ND to 15.35 ng/g, ND to 198.75 ng/g, ND to 1233.34 ng/g, ND to 388.44 ng/g, and ND to 862.19 ng/g, for LML, YQR, SHL, DHR, and XKL, respectively. Interphase fugacity (ffsw) and partition coefficient (Kd) indicated dominant resuspension of antibiotics from sediment to water, causing secondary pollution in EFEs. Two groups of antibiotics, namely MLs (erythromycin, azithromycin, and roxithromycin) and FQs (ofloxacin and enrofloxacin), showed a medium-high level of adsorption tendency on sediment. Source modeling (PMF5.0) identified wastewater treatment plants, sewage, hospitals, aquaculture, and agriculture as the major antibiotic pollution sources in EFEs, contributing between 6% and 80% to different aquatic bodies. Finally, the ecological risk posed by antibiotics ranged from medium to high in EFEs. This study offers valuable insights into the levels, transfer mechanisms, and risks associated with antibiotics in EFEs, enabling the formulation of large-scale policies for pollution control.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Humanos , Antibacterianos/análise , Ecossistema , Cromatografia Líquida , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem , Fluoroquinolonas , Lagos/química , Macrolídeos , Água/análise , China , Monitoramento Ambiental , Medição de Risco , Rios/química
7.
Am J Transl Res ; 14(10): 7308-7323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398231

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) remains the most common type of lung cancer and is associated with distant metastasis and poor prognosis. Epithelial-mesenchymal transition (EMT) plays crucial roles in carcinogenesis, embryogenesis, and wound healing. EMT-related molecules may be adopted for early diagnosis and prognosis of cancer and targeting them may constitute an attractive strategy for treatment. This study aims to identify the EMT-related long non-coding RNAs (lncRNAs) and develop a risk signature to accurately predict the prognosis of LUAD patients. METHODS: The RNA-seq data and corresponding clinical profiles were obtained from LUAD cohort of The Cancer Genome Atlas (TCGA) database. EMT-related lncRNAs significantly associated with prognosis were identified by Pearson correlation analysis and univariate regression analysis. Subsequently, an EMT-related prognostic risk signature was developed through LASSO and multivariate regression analyses. Kaplan Meier and receiver operating characteristic curve analysis were implemented to assess the predictive performance of the signature. The nomogram was constructed to predict the 1-year, 3-year, and 5-year overall survival of LUAD patients. Additionally, enrichment analyses were carried out to identify probable biologic processes and cellular pathways involved in the signature. The correlation of immune cell infiltration and risk score was also evaluated by CIBERSORT algorithm. Finally, we constructed a ceRNA network to further study possible downstream targets and molecular mechanisms of EMT-related lncRNAs in LUAD. RESULTS: Eight EMT-related lncRNAs were identified to develop a prognostic risk signature in LUAD. Patients with high-risk scores had worse survival outcomes than those with low-risk scores. The signature showed robust predictive potential, and was verified to be an independent prognostic factor. Moreover, the risk score based on the signature was significantly correlated with immune cell infiltration in LUAD. CONCLUSIONS: We established and validated a prognostic signature that reflects the tumor microenvironment characteristics and predicts the outcomes for LUAD.

8.
Chemosphere ; 307(Pt 4): 135816, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948094

RESUMO

Excessive nitrate (NO3-) input to reservoirs is a global concern. However, the dynamics and sources of NO3- under thermal stratification in deep reservoirs were rarely explored. In this study, multi-stable isotopes (δ15N/δ18O-NO3-, δ15N-particulate nitrogen (PN), δ15N-dissolved total nitrogen (DTN), and δ2H/δ18O-H2O) and a Bayesian mixing model were applied to reveal the biogeochemical processes and sources of NO3- in a deep reservoir with obvious nitrogen pollution. The results showed that the reservoir was thermally stratified in July while vertically mixed in October. The distribution of δ2H-H2O suggested that riverine nitrogen migrated to the epilimnion and metalimnion during stratification in the reservoir. In the epilimnion and metalimnion, the significant reduction in NO3- concentration was related to the enhancement of assimilation by thermal stratification. Meanwhile, the positive linear correlations between δ18O-NO3- and δ18O-H2O suggested that in-reservoir nitrification occurred, with its depth confined above the hypolimnion. In the hypolimnion, denitrification processes were absent due to the aerobic environment. Overall, NO3- dynamics were mainly controlled by nitrogen inflow, in-reservoir nitrification, and assimilation during thermal stratification. The results of the Bayesian mixing model showed that manure and sewage, and soil nitrogen were the dominant NO3- sources of the reservoir. This study provides new insights and data to help manage and restore deep waters worldwide in tackling a similar situation of nitrogen contamination.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Teorema de Bayes , China , Monitoramento Ambiental/métodos , Esterco/análise , Nitratos/análise , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Óxidos de Nitrogênio , Rios , Esgotos , Solo , Poluentes Químicos da Água/análise
9.
Sustain Cities Soc ; 83: 103962, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35634350

RESUMO

The Sustainable Development Goals (SDGs) call on all nations to accomplish 17 broad global development goals by 2030. However, the COVID-19 pandemic presents a challenging period in human history, causing large-scale impacts on society and the environment as governments shift priorities and divert funding in response to this pandemic. Through a literature survey and data acquirement from various international organizations (e.g. United Nations and European Space Agency), this manuscript is intended to provide critical insights into the impacts of the COVID-19 pandemic on the SDGs. We briefly describe this pandemic's positive and short-term effects on the environment, followed by a critical evaluation of its potential long-term impacts on the environment, society, and the SDGs. On the basis of COVID-19 effects, the SDGs are classified into three categories: directly-affected SDGs, indirectly-affected SDGs, and a stand-alone category. The COVID-19-induced lockdowns and restrictions resulted in a short-term decline in environmental pollution and greenhouse gases (GHG) emissions, providing valuable data for climate advocates and researchers. These positive impacts were essentially temporary due to the synchronized global response to the pandemic. The halted focus on the progress of the SDGs greatly impacts the global green transition to a healthy and sustainable world. COVID-19 threatens to impede the progress toward a prosperous, environment-friendly, and sustainable global development in multiple ways. These multi-dimensional threats have been critically evaluated, along with a description of potential solutions to curtail the adverse effects of COVID-19 on the SDGs. Considering the limited data regarding the impacts of the pandemic on the SDGs, diverse collaborative studies at the regional and global levels are recommended.

10.
J Colloid Interface Sci ; 618: 270-282, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339963

RESUMO

Recently, with the rational design of transition metal-containing nanoagents, chemodynamic therapy (CDT) has been developed and considered a promising method for cancer therapy through Fenton and Fenton-like reaction-induced hydroxyl radical (·OH) generation and cellular oxidative damage. However, it is still a great challenge to realize high reactive oxygen species (ROS) generation and therapeutic efficiency under the strict conditions of the tumor microenvironment (TME). Herein, we design and fabricate a TME-responsive core-shell nanocage composed of a CaCO3 nanolayer and a heterogeneous CoP core (CaCO3@CoP, CCP) with the synergy of CDT and calcium overload to maximize oxidative damage and enhance cancer therapy. The CaCO3 nanoshell is sensitive to pH and can be rapidly degraded upon endocytosis, leading to intracellular Ca2+ accumulation, which further triggers the production of mitochondrial ROS. Subsequently, the CoP hollow nanocage with fully exposed Co active sites has high Fenton-like reactive activity to produce ·OH and induce mitochondrial damage. Mitochondrial damage and ROS elevation, in turn, can modulate Ca2+ dynamics and augment calcium overload. The reciprocal interaction and loop feedback between calcium overload and photoenhanced ROS generation via photothermal therapy (PTT) can further trigger the immunogenic cell death (ICD) process to activate the maturation of dendritic cells (DCs), activation of cytotoxic and helper T cells, and excretion of proinflammatory cytokines to enhance antitumor immunity in vivo. With the butterfly effect, CCP finally brings forth a greatly enhanced cancer therapeutic outcome in murine models.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Camundongos , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
11.
Huan Jing Ke Xue ; 43(1): 363-368, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989520

RESUMO

In order to fully understand the pollution of polychlorinated biphenyls (PCBs) in Dongting Lake, 209 PCB congeners were quantitatively detected and analyzed by isotope-dilution high-resolution mass spectrometry in 21 surface water sampling sites of Dongting Lake and the inflow rivers of the lake. The results showed that a total of 50 PCB congeners were detected in the study area. The ρ(ΣPCBs) ranged from 0.077 to 10 ng·L-1, with an average concentration of 2.7 ng·L-1 and a median concentration of 1.9 ng·L-1. The order of contamination concentrations were as follows:the inflow rivers of the lake > lake region > outlet. Compared with the reports of domestic and foreign studies, PCB pollution in Dongting Lake is at a low level. The main pollutants in the surface water were dichlorobiphenyls and tri- and tetrachlorobiphenyls, with relative abundances of 67%, 14%, and 16%, respectively. PCB11, PCB17, PCB18, PCB20+33, PCB28, PCB47+75, PCB52, and PCB68 were the most widely distributed and detected in more than 80% of samples. Among them, ρ(PCB11) was the highest, with an average concentration of 1.6 ng·L-1, accounting for 59% of ρ(ΣPCBs), from the domestic organic pigment production process of unintentional emissions. Atmospheric transport deposition and historical residue were the main sources of PCBs in water. According to the toxicity equivalent factor method, the ecological toxicity risk of the study area was evaluated, and the results showed that the TEQ in the water was far lower than the relevant standard limit, indicating that the pollution of PCBs in the surface water of Dongting Lake and the inflow rivers would not cause harm to exposed organisms.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Lagos/análise , Bifenilos Policlorados/análise , Medição de Risco , Rios , Poluentes Químicos da Água/análise
13.
J Hazard Mater ; 423(Pt B): 127121, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34534807

RESUMO

In past studies, the health and ecological risks of PCBs are well established. The impact of low-dose PCBs on aquatic ecosystems for an extended period is a matter of concern in the current era. The application of fatty acids (FAs) as bioindicators of pollution in the freshwater food web is almost unavailable. This study investigated concentrations of 209 PCB congeners, stable isotope levels, and FAs composition in ten freshwater species of Dongtinghu Lake, China. Total PCB congeners (∑PCBs) concentrations were ranged from 4.17 to 38.35 ng/g lipid weight. A total of 84 PCB congeners were detected out of 209 target PCB congeners, particularly PCB101, 118, 138, 153, and 155 found in all samples. The concentrations of 24 PCB congeners increased with trophic levels, but PCB 155 concentrations were consistent throughout trophic levels. The toxic equivalents (TEQ) of dl-PCBs (mostly PCB 126 and 169) also increased with trophic levels Out of total 35 FAs, 21 FAs were significantly positively correlated with 43 PCB congeners. Among FAs, C16:0 was the most abundant and positively correlated with most PCB compounds. Positive correlations between FAs and PCBs indicated that FAs can be used as efficient bioindicators of PCBs pollution in the aquatic food web.


Assuntos
Bifenilos Policlorados , Bioacumulação , Ecossistema , Biomarcadores Ambientais , Ácidos Graxos , Cadeia Alimentar , Isótopos , Lagos , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade
14.
Mater Horiz ; 8(12): 3457-3467, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34755162

RESUMO

The production of reactive oxygen species (ROS) to elicit lethal cellular oxidative damage is an attractive pathway to kill cancer cells, but it is still hindered by the low ROS production efficiency of the current methods. Herein, we design a one-dimensional (1D) π-π conjugated ferriporphyrin covalent organic framework on carbon nanotubes (COF-CNT) for activating nanocatalytic and photodynamic cancer therapy. The COF-CNT can catalyze the generation of ROS and O2 in the tumor microenvironment (TME), and realize a self-oxygen-supplying PDT under near-infrared (NIR) light irradiation, simultaneously. With the full electron delocalization at the atomically dispersed active center, the catalytic activity of COF-CNT with extended π-conjugation is 6.8 times higher than that without the π-conjugated structure. The formation of the COF structure with π-π conjugation also changes the density of states (DOS) profile of its functional building block for improving PDT. Through one single treatment, it successfully achieves complete tumor regression of 4T1 breast carcinoma in mice with immunoregulation.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Nanotubos de Carbono , Neoplasias , Fotoquimioterapia , Animais , Estruturas Metalorgânicas/química , Camundongos , Nanopartículas/química , Neoplasias/terapia , Fotoquimioterapia/métodos , Microambiente Tumoral
15.
Chin Med J (Engl) ; 134(14): 1687-1694, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34397595

RESUMO

BACKGROUND: Computed tomography images are easy to misjudge because of their complexity, especially images of solitary pulmonary nodules, of which diagnosis as benign or malignant is extremely important in lung cancer treatment. Therefore, there is an urgent need for a more effective strategy in lung cancer diagnosis. In our study, we aimed to externally validate and revise the Mayo model, and a new model was established. METHODS: A total of 1450 patients from three centers with solitary pulmonary nodules who underwent surgery were included in the study and were divided into training, internal validation, and external validation sets (n = 849, 365, and 236, respectively). External verification and recalibration of the Mayo model and establishment of new logistic regression model were performed on the training set. Overall performance of each model was evaluated using area under receiver operating characteristic curve (AUC). Finally, the model validation was completed on the validation data set. RESULTS: The AUC of the Mayo model on the training set was 0.653 (95% confidence interval [CI]: 0.613-0.694). After re-estimation of the coefficients of all covariates included in the original Mayo model, the revised Mayo model achieved an AUC of 0.671 (95% CI: 0.635-0.706). We then developed a new model that achieved a higher AUC of 0.891 (95% CI: 0.865-0.917). It had an AUC of 0.888 (95% CI: 0.842-0.934) on the internal validation set, which was significantly higher than that of the revised Mayo model (AUC: 0.577, 95% CI: 0.509-0.646) and the Mayo model (AUC: 0.609, 95% CI, 0.544-0.675) (P < 0.001). The AUC of the new model was 0.876 (95% CI: 0.831-0.920) on the external verification set, which was higher than the corresponding value of the Mayo model (AUC: 0.705, 95% CI: 0.639-0.772) and revised Mayo model (AUC: 0.706, 95% CI: 0.640-0.772) (P < 0.001). Then the prediction model was presented as a nomogram, which is easier to generalize. CONCLUSIONS: After external verification and recalibration of the Mayo model, the results show that they are not suitable for the prediction of malignant pulmonary nodules in the Chinese population. Therefore, a new model was established by a backward stepwise process. The new model was constructed to rapidly discriminate benign from malignant pulmonary nodules, which could achieve accurate diagnosis of potential patients with lung cancer.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Medição de Risco , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X
16.
Materials (Basel) ; 14(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199034

RESUMO

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g-1 and a charge capacity of 945.8 mA h g-1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg-1), a high power density (10.94 kW kg-1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.

18.
Hum Cell ; 34(2): 419-435, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33586121

RESUMO

Since December 2019, the novel coronavirus SARS-CoV-2 pandemic (COVID-19) outbroke in Wuhan and spread in China. Here we aimed to investigate the clinical and radiological characteristics of COVID-19 cases. We collected and analyzed the clinical data of 172 hospitalized cases of COVID-19 who were diagnosed via qRT-PCR of nasopharyngeal swabs during January 2020 and February 2020. The chest images were reviewed by radiologists and respirologists. The older patients with COVID-19 in Henan Province had more severe disease and worse prognosis. The male sex, smoking history and Wuhan exposure of patients are not related to the severity or prognosis of COVID-19. Family gatherings were showed among 26.7% of patients. A greater proportion of patients in the severe group suffer from combined chronic diseases. CT results showed that most patients had bilateral lung lesions and multiple lung lobes. The lungs of severe patients are more damaged. Both the infection range and inflammatory factor levels are related to the poor prognosis. Antiviral drugs, immunoglobulin and traditional Chinese medicine are mainly used for the treatment of COVID-19 patients. The discharge rate of COVID-19 patients was 93.0%, and the mortality rate was 2.3%. Case type, lymphocyte ratio grade, and respiratory failure at admission are risk factors for poor prognosis, except for the number of infiltrating lung lobes. The results showed that severe disease process, lymphopenia and respiratory failure are risk factors for the COVID-19.


Assuntos
COVID-19/diagnóstico , Adulto , Idoso , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/mortalidade , COVID-19/terapia , China/epidemiologia , Comorbidade , Diagnóstico Diferencial , Feminino , Glicosídeos , Humanos , Imunoglobulinas/uso terapêutico , Pulmão/diagnóstico por imagem , Contagem de Linfócitos , Linfopenia , Masculino , Medicina Tradicional Chinesa , Pessoa de Meia-Idade , Pregnanos , Prognóstico , Fatores de Risco , Índice de Gravidade de Doença , Fatores Sexuais , Fumar/efeitos adversos , Tomografia Computadorizada por Raios X
19.
Sci Rep ; 11(1): 109, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420280

RESUMO

Metal pollution in drinking water source has been under scrutiny as it seriously affects human health. This work examined 12 dissolved metals in the surface and overlying water of the Xiangjiang River, an important drinking water source in southern China, and characterized their distribution, identified their possible sources, assessed their toxicity load, and determined their potential ecological and health risk. No significant difference was found in the metal concentration between surface and overlying water. The average metal concentration fell in the order of Mg > Mn > Ba > Fe > Zn > As > Sb > Ni > Cd > V > Cr > Co, and all was lower than the safety threshold in the drinking water guideline of China. Anthropogenic activities were found to be the main source of metals from correlation analysis, principal component analysis (PCA), and cluster analysis (CA). According to the total heavy metal toxicity load (HMTL), 98.20%, 71.54%, 68.88%, and 7.97% of As, Cd, Sb, and Mn should be removed from the surface water to ensure safety. Most water samples from the surveyed area were found to have high ecological risk as was measured by the ecological risk index (RI). Health risk assessment showed that children are more susceptible than adults to the non-carcinogenic risk of dissolved metals, and the potential carcinogenic risk (CR) of As and Cd should be addressed. The results provide guidance for controlling the metal pollution of the Xiangjiang River and improving its quality as a drinking water source.

20.
RSC Adv ; 11(11): 6415-6422, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35423125

RESUMO

Frequent cyanobacterial blooms in eutrophic waters produce a variety of toxins such as microcystins (MCs), which are seriously harmful to waterbodies and human health. The spatiotemporal distribution characteristics of the MC-LR concentration in drinking water sources in seven river basins in China were investigated in this study. The removal rate of MC-LR in the purification process of water treatment plants and the human health risk of MC-LR in drinking water are also discussed. The results show that the detection frequency of MC-LR in source water was 55.46% and its concentration ranged from 0.06 × 10-3 to 52 × 10-3 µg L-1 (mean of 12.47 × 10-3 µg L-1), which are both below China's drinking water quality standard for algal toxins. The MC-LR concentration in lakes and reservoirs was higher than that in rivers, and exhibited an obvious spatiotemporal variation. The mean removal rate of MC-LR varied with river basin, and was also slightly higher for the advanced water treatment process (97.46%) in comparison to that of the conventional process (96.74%). The concentration of MC-LR in 8.26% of treated water samples was higher than that of raw water, thus indicating that MC-LR may be further released during the purification process. The risk index of MC-LR in treated water samples ranged from 2.29 × 10-3 to 8.40 × 10-3 (mean of 4.73 × 10-3), which corresponded to an extremely low level of risk. However, intensive monitoring should still be carried out in some high-concentration watersheds during the summer to ensure the safety of public drinking water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA